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While transferring one flow φ with fixed points homeomorphically to its equivalent 
flow ψ, we show that positive topological entropy degenerates to zero (such 
degeneracy happens for equivalent continuous flows [3] and equivalent differential 
flows [6]) if and only if all ergodic invariant measures with positive measure-theoretic 
entropy degenerate to fixed points. Whenever φ is assumed to be topological 
transitive, the measure degeneracy implies that the resulted equivalent flow ψ is 
topologically chaotic but statistically trivial, meaning that all ergodic invariant 
measures are supported on fixed points. Using different approaches in different areas 
people constructed examples of topological chaotic but statistical trivial systems, 
see [3] for C0 flows, see [6] for Cr, r ≥ 1, flows, see [1] [11] for C0 homeomorphisms, 
see time one map in [6] for Cr, r ≥ 1 diffeomorphisms. We point out it is non-
hyperbolic singularity causes the degeneracy while changing one flow equivalently 
to another.

© 2023 Elsevier Inc. All rights reserved.

1. Preliminaries

Two flows defined on a compact metric space are equivalent if there exists a homeomorphism of the space 
that sends each orbit of one flow onto an orbit of the other flow while preserving the time orientation. The 
topological entropy (measure-theoretic entropy) of a flow is defined as the entropy of its time-1 map. While 
topological entropy is an invariant for equivalent homeomorphisms (see Theorem 7.2 in [10]), finite non-zero 
topological entropy for a flow cannot be an invariant because its value is affected by time reparameterization. 
However, 0 and ∞ topological entropy are invariants for equivalent flows without fixed points (see [3][7][8][9]).
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In equivalent continuous flows with fixed points, Ohno [3] constructed a counterexample, showing that 
neither 0 nor ∞ entropy is preserved by equivalence. In equivalent differential flows with singularities Sun, 
Young and Zhou constructed a counterexample in [6], showing that 0 topological entropy is not preserved 
by equivalence. Note that a differentiable flow on a compact manifold cannot have ∞ entropy (see Theorem 
7.15 in [10]).

In the examples in [3] [6], the phenomena that positive topological entropy degenerates to 0 (entropy 
degeneracy) and that all ergodic invariant measures with positive measure-theoretic entropy degenerate to 
the atomic measures supposed on fixed points or singularities (measure degeneracy) happen simultaneously, 
while shifting homeomorphically one flow to its equivalent flow on a compact metric space or compact 
smooth manifold. We then ask naturally: is the entropy degeneracy characterized by measure degeneracy 
for any given equivalent continuous (or differential) flows with fixed points (or singularities)? In the present 
paper we give a positive answer. Now we introduce this result.

For a flow φ : M × R → M denote by φt : M → M the homeomorphism given by φt(x) = φ(x, t). A 
Borel probability measure (measure for short) μ is called φt-invariant if for any Borel set B it holds that 
μ(φt(B)) = μ(B). It is called φ-invariant if it is φt-invariant for all t. A φ-invariant measure is called ergodic 
with respect to φ if any Borel set φt-invariant for any t has measure 0 and 1. The set of all ergodic φ-invariant 
measures is denoted by Merg,φ. We denote by Minv,ψ the set of φ-invariant measures. We use h(φ) := h(φ1)
and hμ(φ) := hμ(φ1) to denote the topological entropy and measure-theoretic entropy, respectively. Set

M+
erg,φ = {μ ∈ Merg,φ ; hμ(φ) > 0}, and M0

erg,φ = {μ ∈ Merg,φ ; hμ(φ) = 0}.

We use {fixed points} to denote both the set of all fixed points for a continuous flow and the set of all 
atomic measures supported on fixed points. And we use the terminology {singularities} similarly for a 
differential flow.

Definition 1.1. Let two continuous flows φ, ψ : M × R → M on a compact metric space be equivalent and 
let π : M → M denote a homeomorphism preserving the time orientation such that

π(Orb(x, φ)) = Orb(π(x), ψ), ∀x ∈ M.

If h(φ) > 0 and h(ψ) = 0 hold simultaneously, we say that the positive entropy of φ degenerates to 0, or that 
the phenomenon of entropy degeneracy happens, while transferring φ to ψ by π. If M+

erg,φ �= ∅, M+
erg,ψ = ∅

and π∗M+
erg,φ ∩ Merg,ψ = ∅ hold simultaneously, we say that all measures in M+

erg,φ degenerate to fixed 
points, or that the phenomenon of measure degeneracy happens, while transferring φ to ψ by π.

The follow lemma is from [4].

Lemma 1.2. Let two continuous flows φ, ψ : M × R → M on a compact metric space be equivalent and let 
π : M → M denote a homeomorphism preserving the time orientation such that

π(Orb(x, φ)) = Orb(π(x), ψ), ∀x ∈ M.

Set M0 = {fixed points of φ}. There exists a continuous function θ(x, t), x ∈ M \M0, t ∈ R such that
1) θ(x, 0) = 0 and θx = θ(x, .) : R → R is strictly increasing; and
2) θx(s + t) = θx(s) + θφs(x)(t); and
3) π ◦ φt(x) = ψθ(x,t) ◦ π(x).

We call θ(x, t) : M \M0 ×R → R a reparameterization while transferring φ to ψ by π.
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Theorem 1.3. (Main Theorem) Consider two equivalent continuous flows φ, ψ : M ×R → M on a compact 
metric space M with transferring homeomorphism π : M → M , that is,

π(Orb(x, φ)) = Orb(π(x), ψ), ∀x ∈ M.

Then the following are equivalent.
(1). The positive entropy of φ degenerates to 0, while transferring φ to ψ by π;
(2). The φ invariant ergodic measures with positive measure-theoretic entropy degenerate to fixed points, 

while transferring φ to ψ by π;

Corollary 1.4. If the phenomenon of measure degeneracy or the entropy degeneracy happens while trans-
ferring φ to ψ by π, then lim supt→+∞

θ(x,t)
t → ∞ for μ − a.a.x ∈ M , ∀μ ∈ M+

erg,φ, where θ(x, t) is the 
reparameterization while transferring φ to ψ by π.

In Section 2 we will show explicitly how the phenomenon of measure degeneracy happens. We will prove 
in Section 3 Main Theorem, by using which we will classify all the probability systems in Section 4.

2. Time reparameterization and measure degeneracy

While transferring one flow φ to its equivalent flow ψ, time reparameterization θ(x, t) (see Lemma 1.2) 
may increase very quickly as t → +∞. In this section we show explicitly how an invariant ergodic measure 
μ ∈ Merg,φ degenerates, provided

lim
t→+∞

θ(x, t)
t

= ∞, μ− a.a. x ∈ M.

Proposition 2.1. Denote by M0 the set of fixed points of a given continuous flow φ on a compact metric 
space M . Suppose

θ(x, t), x ∈ M \M0, t ∈ R

is a continuous function satisfying the following properties:
1) θ(x, 0) = 0 and θx = θ(x, .) : R → R is strictly increasing; and
2) θx(s + t) = θx(s) + θφs(x)(t).

Then it holds for a given μ ∈ Merg,φ that either

lim
t→+∞

θ(x, t)
t

= lim
t→+∞

∫ t

0 θ(φsx, 1) ds
t

=
∫

θ(x, 1) dμ, for μ− a.a. x ∈ M,

or

lim
t→+∞

θ(x, t)
t

= ∞, μ− a.a. x ∈ M.

Proof. For t > 0 take integer n such that n ≤ t ≤ n + 1, then

n

n + 1
θ(x, n)

n
≤ θ(x, t)

t
≤ n + 1

n

θ(x, n + 1)
n + 1 .

Since θ(x, n) = θ(x, 1) +θ(φ1x, 1) + · · ·+θ(φn−1x, 1), applying Birkhoff ergodic theorem for φ1 the following 
limits exist
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lim
n→+∞

θ(x, n)
n

= lim
t→+∞

θ(x, t)
t

= lim
n→+∞

θ(x, n + 1)
n + 1

for μ − a.a.x ∈ M . Moreover, this limit is a constant b for μ − a.a.x ∈ M , this is because limt→+∞
θ(x,t)

t is 
φ invariant and μ is ergodic for φ. For any φ1 ergodic measure τ we have

b = lim
n→+∞

θ(x, n)
n

= lim
n→+∞

Σn−1
i=0 θ(φix, 1)

n
=

∫
θ(x, 1) dτ.

By the ergodic decomposition theorem it holds that
∫

θ(x, 1) dμ =
∫

(
∫

θ(x, 1) dτ) dμ =
∫

b dμ = b.

So we have

lim
t→±∞

θ(x, t)
t

=
∫

θ(x, 1) dμ, for μ− a.a. x ∈ M.

Applying Birkhoff ergodic theorem to (φ, μ) it holds that

lim
t→±∞

θ(x, t)
t

=
∫

θ(x, 1) dμ = lim
t→±∞

∫
θ(φsx, 1)ds

t
, μ− a.a. x ∈ M. (2.1)

Next we consider the case that θ(., 1) is not integrable with μ, meaning 
∫
θ(x, 1) dμ = ∞. We will show 

that limt→+∞
θ(x,t)

t = +∞, μ − a.a. x ∈ M , by showing that lim inft→+∞
θ(x,t)

t = +∞, μ − a.a. x ∈ M .
Let us introduce a new function

θ−(x) = lim inf
t→+∞

∫ t

0 θ(φsx, 1) ds
t

, x ∈ M.

Since
∫ t

0 θ(φsφτx, 1) ds
t

= t + τ

t

∫ t+τ

0 θ(φsx, 1) ds
t + τ

−
∫ τ

0 θ(φsx, 1) ds
t

,

we have θ−(φτx) = θ−(x), τ ∈ R, x ∈ M . Note μ is both φ-invariant and φ-ergodic, θ−(x) = c a constant 
μ − a.a. x ∈ M . It suffices from (2.1) to complete the proposition by showing the following

Assertion. c = +∞.

Let N > 1 be a given big integer and let

AN = {x ∈ M | θ(x, 1) > N}.

AN is measurable since θ(x, 1) is continuous. Define

θN (x, 1) =
{

θ(x, 1), x � M \AN

N, x ∈ AN .

Then {θN (x, 1)}+∞
N=1 is an increasing sequence of integrable functions and

lim θN (x, 1) = θ(x, 1).

N→+∞
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Since 
∫
θ(x, 1) dμ = +∞, 

∫
θN (x, 1) dμ → +∞ by using the Monotone Convergence Theorem. For given 

positive real R take NR such that 
∫
θNR

(x, 1) dμ − 1 > R. Since by the Birkhoff ergodic theorem 

limt→+∞

∫ t
0 θNR

(φsx,1) ds
t =

∫
θNR

(y, 1) dμ, there exists TR > 0 such that for all t ≥ TR it holds that

∫ t

0 θNR
(φsx, 1) ds
t

>

∫
θNR

(y, 1) dμ− 1 > R.

So,

∫ t

0 θ(φsx, 1) ds
t

≥
∫ t

0 θNR
(φsx, 1) ds
t

> R.

This implies that assertion, c = ∞. �
Proposition 2.2. Consider a continuous flow φ on a compact metric space M . Suppose

θ(x, t), x ∈ M, t ∈ R

is a continuous function satisfying the following properties:
1) θ(x, 0) = 0 and θx = θ(x, .) : R → R is strictly increasing; and
2) θx(s + t) = θx(s) + θφs(x)(t).

Let B = {x ∈ M | θ(x,t)t → ∞(t → +∞)}. Then B is φs-invariant, for all s ∈ R.

Proof. Note θ(x, s + t) = θ(x, s) +θ(φs(x), t), θ(x,s+t)
t → ∞(t → +∞) if and only if θ(φsx,t)

t → ∞(t → +∞). 
This implies that φs(x) ∈ B, ∀x ∈ B. �
Proposition 2.3. Consider two equivalent flows φ, ψ : M × R → M on a compact metric space M with 
transferring homeomorphism π : M → M , that is,

π(Orb(x, φ)) = Orb(π(x), ψ), ∀x ∈ M.

We suppose that limt→+∞
θ(x,t)

t = ∞ for μ-a.e. x ∈ M for a given non-atomic measure μ ∈ Merg,φ

and suppose that Supp(μ) ∩ {fixed points} = {p} consisting of exact one fixed point of φ, where θ :
M \ M0 × R → R is the reparameterization while transferring φ to ψ by π. Let ν := π∗μ. Then ν is not 
a ψ-invariant measure, ν /∈ Minv,ψ (remark: ν is ψ-ergodic but not ψ-invariant), or in other words, the 
ψ-ergodic invariant measure ν degenerates to the fixed point q := π(p) in the sense that ν(B(q, η)) → 1 as 
η → 0, where B(q, η) = {y ∈ M | d(q, y) < η}.

Proof. When ψt(A) = A, ∀ t ∈ R for some Borel set A, it follows that φt(π−1A) = π−1(A), ∀t ∈ R. Since 
μ is φ ergodic, μ(π−1(A)) = 0, 1 and thus ν(A) = 0, 1. So ν is ψ ergodic. ν is not atomic on fixed point 
because μ is not. Now we show that ν is not ψ-invariant. In fact, otherwise, we could deduce as follows that 
ν is atomic on the fixed point q, a contradiction.

Since p ∈ Supp(μ), q ∈ Supp(ν). Take arbitrarily two reals η1 > η > 0 and consider two balls B(q, η) =
{y ∈ M | d(q, y) < η} and B(q, η1) = {y ∈ M | d(q, y) < η1} centered at q. Their boundaries are denoted 
by ∂B(q, η) and ∂B(q, η1), respectively. Clearly, ∂B(q, η) and ∂B(q, η1) are compact. We take η1 small 
such that μ(π−1B(q, η1)) < 1. We take η small enough such that the time used to go from π−1∂B(q, η) to 
π−1∂B(q, η1) or vice versa along any orbit of φ is bigger than 2. This can be down because the fixed point 
p is inside π−1B(q, η) and π−1B(q, η1), and near p every orbit goes slowly.



6 R. Saghin et al. / J. Math. Anal. Appl. 527 (2023) 127445
Denote by M0 the set of fixed points of φ. By Lemma 1.2 the reparameterization θ(x, t) is continuous 
and satisfies πφt(x) = ψθ(x,t)(π(x)), ∀x ∈ M \ M0. Take C > 0 such that θ(x, t) ≤ C, ∀1 ≤ t ≤ 2, 
∀x ∈ M \ π−1B(q, η). For τ ≥ 2 we write τ = r + 
, where r ∈ N, 1 ≤ 
 < 2. Then

θ(x, τ) = θ(x, 1) + θ(φ1(x), 1) + · · · + θ(φr−1x, 1) + θ(φr(x), 
)

≤ C(r + 1)

≤ Cτ,

(2.2)

provided φ(x, [0, τ)) ⊂ M \ π−1B(q, η).
Since μ is both φ invariant and φ ergodic, there exists a Borel set D of μ full measure such that

μ(A) = lim
t→+∞

∫ t

0 χA(φs(x))ds
t

, ∀x ∈ D

holds for any Borel set A, where χA denotes the characteristic function of A. Similarly, there exists a Borel 
set E of ν full measure such that

ν(A) = lim
t→+∞

∫ t

0 χA(ψs(x))ds
t

, ∀x ∈ E

holds for any Borel set A. Since ν = π∗μ, π(D) ∩ E is of ν full measure. Take x ∈ Supp(μ) ∩ D and 
y ∈ Supp(ν) ∩ E with y = π(x). Since ν(B(q, η)) > 0, the orbit Obt(y, ψ) starting at y will pass through 
B(q, η) infinite times. Without loss of generality we assume y ∈ M \B(q, η) and thus x ∈ M \ π−1B(q, η).

Take a1 such that φ(x, [0, a1)) ∩ π−1B(p, η1) = ∅ and φa1(x) ∈ ∂π−1B(q, η1). Take b1 > a1 such that 
φ(x, [a1, b1)) ∩ π−1B(p, η) = ∅ and φb1(x) ∈ ∂π−1B(q, η). Because the orbit starting at φa1(x) enters 
π−1B(q, η) with positive μ measure and thus enters infinite times, the above b1 exists. Take b2 > b1
such that φ(x, [b1, b2]) ⊂ π−1B̄(p, η) and φ(x, (b2, b2 + r)) ∩ π−1B(p, η) = ∅ for some small r > 0. Be-
cause the orbit starting at φb1(x) enters π−1(B(q, η1) \ B(q, η)) with positive μ measure and thus enters 
infinite times, the above b2 exists. If it happens that the orbit starting at φb2(x) stays π−1B(q, η1) for-
ever, then μ(π−1B(q, η1)) = 1, which contradicts to the choice of η1. So we can take a2 > b2 such 
that φ(x, [b2, a2]) ⊂ π−1B̄(p, η1) and φ(x, (a2, a2 + r)) ∩ π−1B(p, η1) = ∅ for some small r > 0. Take 
a3 > a2 such that φ(x, (a2, a3)) ∩ π−1B(p, η1) = ∅ and φa3(x) ∈ ∂π−1B(q, η1). Take b3 > a3 such that 
φ(x, (a3, b3)) ∩ π−1B(p, η) = ∅ and φb3(x) ∈ ∂π−1B(q, η). Take b4 > b3 such that φ(x, [b3, b4]) ⊂ π−1B̄(p, η)
and φ(x, (b4, b4 + r)) ∩ π−1B(p, η) = ∅ for some small r > 0. Take a4 > b4 such that φ(x, [b4, a4]) ⊂
π−1B̄(p, η1) and φ(x, (a4, a4 + r)) ∩ π−1B(p, η1) = ∅ for some small r > 0. One can show the existence of 
a3, b3, b4, a4 by similar argument as showing the existence of a1, b1, a2, b2. By repeating this procedure 
we get two sequences

a1, a2, a3, a4, a5, · · · , and b1, b2, b3, b4, b5, · · ·

such that the segments Orb(x, [a2k−1, a2k]) are inside the closed set π−1B̄(p, η1) and Orb(x, (a2k, a2k+1)) are 
outside the open set π−1B(p, η1), and the segments Orb(x, [b2k−1, b2k]) are inside the closed set π−1B̄(p, η)
and Orb(x, (b2k, b2k+1)) are outside the open set π−1B(p, η), for all k ∈ N. We note that

πφ(x, ai) = ψ(y, θ(x, ai)), and πφ(x, bi) = ψ(y, θ(x, bi)), i = 1, 2, · · · .

We also note that a2k ≥ 2k, k = 1, 2, 3, · · · .
Note that θ(x, a2k−1) − θ(x, a2k−2) = θ(φa2k−2(x), a2k−1 −a2k−2) and φa2k−2(x) ∈ M \π−1B(q, η). When 

a2k−1 − a2k−2 < 2, then θ(φa2k−2(x), a2k−1 − a2k−2) ≤ θ(φ2k−2(x), 2) ≤ C. It follows when n → +∞
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0 ≤ Σa2k−1−a2k−2≤2[θ(x, a2k−1) − θ(x, a2k−2)]
θ(x, a2n) ≤ nC

θ(x, a2n) = a2n

θ(x, a2n)
nC

a2n
→ 0.

Recall by our assumption ν ∈ Merg,ψ. Then

ν(B̄(q, η1)) ≥ lim
n→+∞

[θ(x, a2) − θ(x, a1)] + [θ(x, a4) − θ(x, a3)] + · · · + [θ(x, a2n) − θ(x, a2n−1)]
θ(x, a2n)

= 1 − lim
n→+∞

[θ(x, a3) − θ(x, a2)] + [θ(x, a5) − θ(x, a4)] + · · · + [θ(x, a2n−1) − θ(x, a2n−2)]
θ(x, a2n)

= 1 − lim
n→+∞

Σa2k−1−a2k−2>2[θ(x, a2k−1) − θ(x, a2k−2)]
θ(x, a2n)

− lim
n→+∞

Σa2k−1−a2k−2≤2[θ(x, a2k−1) − θ(x, a2k−2)]
θ(x, a2n)

= 1 − lim
n→+∞

Σa2k−1−a2k−2>2[θ(x, a2k−1) − θ(x, a2k−2)]
θ(x, a2n)

≥ 1 − lim
n→+∞

a2n

θ(x, a2n) lim
n→+∞

C[(a3 − a2) + · · · (a2n−1 − a2n−2)]
[(a3 − a2) + · · · (a2n−1 − a2n−2)] + [(a2 − a1) + · · · (a2n − a2n−1)]

(by (2.2 ))

≥ 1 − lim
n→+∞

a2n

θ(x, a2n)C,

which tends to 1 as n → +∞. By taking η1 → 0 arbitrarily small, this implies that ν = δq, the atomic 
measure supported on the singularity q, a contradiction. �
3. Entropy for equivalent probability flows

In this section we prove the Main theorem. We adapt Katok’s definition of measure theoretic entropy [2]
in the proof.

Given a flow φt on a compact metric space M , q ∈ M , t ∈ R and ε > 0, we set a (t, ε, φ)-ball

D(q, t, ε, φ) = {w ∈ M | d(φsw, φsq) < ε, 0 ≤ s ≤ t}.

Definition 3.1. Given a φ invariant and φ ergodic measure μ and given δ ∈ (0, 1), let R(δ, t, ε, φ) denote the 
smallest number of (t, ε, φ)-balls needed to cover a set whose μ-measure is greater than 1 − δ. Then the 
measure theoretic entropy of φ, denoted by hμ(φ), is defined by

hμ(φ) := lim
ε→0

lim sup
t→∞

1
t

lnR(δ, t, ε, φ).

This definition is a flow version of what Katok defined for homeomorphism in [2], where he pointed out 
by the Shannon theorem that the limit in definition is independent of the choice of δ. The following lemma 
talks about the relation between the entropy in Definition 3.1 and the entropy defined by time-1 map.

Lemma 3.2.

(1). For μ ∈ Merg,φ it follows that hμ(φ) = hμ(φ1);

(2). h(φ) = h(φ1) = sup{hμ(φ1) | μ ∈ Merg,φ}.

Proof. This is Theorem A in [5]. �
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Observe by definition that a φ1-invariant measure is not necessarily φ-invariant and a φ-ergodic measure 
is not necessarily φ1-ergodic, the variational principle given in the second term in the above lemma thus 
differs from the usual one for homeomorphisms.

Definition 3.3. Let φ, ψ : M × R → M be two flows on a compact metric space and let μ ∈ Merg,φ and 
ν ∈ Merg,ψ. We say that two probability flows (φ, μ) and (ψ, ν) are equivalent, if there exist a μ-full measure 
φ-invariant set A ⊂ M and a homeomorphism π : A → π(A) and a continuous map θ : A × R → R such 
that the following holds:

1. π(A) is with ν-full measure; and
2. 0 < limt→+∞

θ(x,t)
t < +∞, ∀ x ∈ A; and

3. θx : R → R is strictly increasing, ∀ x ∈ A; and
4. θx(s + t) = θx(s) + θφs(x)(t), ∀ x ∈ A, ∀ s, t ∈ R; and
5. π ◦ φt(x) = ψθ(x,t) ◦ π(x), ∀ x ∈ A, ∀ t ∈ R.

As in Lemma 1.2, we call θ(x, t) a reparameterization while shifting (φ, μ) to (ψ, ν) by π.
One may compare the equivalent probability flows in Definition 3.3 with the measure-theoretic equivalent 

flows defined in [7], where the reparameterization θ(x, t) was assumed to be extended continuously to the 
whole support of μ. Observe θ(x, t) can not be extended continuously to Supp(μ) in general provided 
Supp(μ) contains a fixed point, the measure-theoretic equivalence defined in [7] contains only parts of cases 
in Definition 3.3. The following Theorem 3.6 points out that zero entropy and infinity entropy are preserved 
for equivalent probability flows defined in Definition 3.3, which generalizes the same result for equivalent 
flows defined in [7]. Instate of Supp(μ) in [7] we need here to deal with a μ-full measure set not compact. 
We have to argue in a new approach due to the lack of compactness. Now we start by a lemma.

Lemma 3.4. Suppose there exist μ ∈ Merg,φ and ν ∈ Merg,ψ such that the two probability flows (φ, μ) and 
(ψ, ν) are equivalent. Then

∫
fdν = 1∫

θ(x, 1)dμ

∫
(
θ(x,1)∫
0

f(ψt(πx)) dt)dμ, ∀f ∈ C0(M,R),

where θ(x, t) denotes the reparameterization while transferring (φ, μ) to (ψ, ν) by π.

Proof. Set

Qμ(φ) =

⎧⎨
⎩x ∈ M | lim

t→±∞
1
t

t∫
0

f(φsx)ds =
∫
M

f dμ(x), ∀f ∈ C0(M,R)

⎫⎬
⎭ .

By the Birkhoff ergodic theorem, Qμ(φ) is a φ-invariant and μ-full measure set. One can define similarly 
Qν(ψ). Take x ∈ Qμ(φ) such that π(x) ∈ Qν(ψ). Since x ∈ Qμ(φ) it holds by Proposition 2.1 and its proof 
that

lim
n→+∞

1
n

Σn−1
i=0 θ(φi(x), 1) =

∫
θ(y, 1) dμ(y) = lim

t→+∞
θ(x, t)

t
.

Note θ(x, t) → ±∞ as t → ±∞ and πφt(x) = ψθ(x,t)π(x), it follows for a given f ∈ C0(M, R) that

∫
fdν = lim

t→∞
1
t

t∫
f(ψs(πx)) ds
0
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= lim
n→∞

1
1
nΣn−1

i=0 θ(φi(x), 1)
1
n

Σn−1
i=0 θ(φi(x),1)∫

0

f(ψt(πx)) dt

= 1∫
θ(y, 1) dμ(y)

lim
n→∞

1
n

Σn−1
i=0

θ(φi(x),1)∫
0

f(ψsψΣi−1
τ=0θ(φτ (x),1)(πx)) ds

= 1∫
θ(y, 1) dμ(y)

lim
n→∞

1
n

Σn−1
i=0

θ(φi(x),1)∫
0

f(ψsψθ(x,i)(πx)) ds

= 1∫
θ(y, 1) dμ(y)

lim
n→∞

1
n

Σn−1
i=0

θ(φi(x),1)∫
0

f(ψsπφi(x)) ds, μ− a.a. x ∈ X.

Denote

F (x) = lim
n→∞

1
n

Σn−1
i=0

θ(φi(x),1)∫
0

f(ψsπφi(x)) ds.

Since μ is φ1-invariant, by the Birkhoff ergodic theorem F (x) is defined for μ − a.a. x and

∫
F dμ =

∫
(
θ(y,1)∫
0

f(ψsπy) ds) dμ(y).

Observe that both 
∫
f dμ and 

∫
θ(y, 1) dμ(y) are constants and remain unchanged when taking integral, so

∫
fdν = 1∫

θ(y, 1) dμ(y)

∫
(
θ(y,1)∫
0

f(ψsπy) ds) dμ(y). �

Corollary 3.5. Let two ergodic and invariant probability flows (φ, μ) and (ψ, ν) are equivalent, see Defini-
tion 3.1, with corresponding reparameterization θ(x, t) and homeomorphism π. Then

μ(A) = 0 ⇔ ν(π(A)) = 0 for any Borel set A.

Proof. If the sufficient part does not hold, there would exist a Borel set A with μ(A) > 0 and ν(π(A)) = 0. 
We denote by χπ(A) the characteristic function of π(A) and take a sequence {fn} of positive and bounded 
continuous function with fn → χπ(A). So 

∫
fn dν →

∫
χπ(A) dν = ν(π(A)) = 0. We have by (4) in Defini-

tion 3.3 and Lemma 3.4

∫
fndν = 1∫

θ(x, 1)dμ

∫
(
θ(x,1)∫
0

fn(ψt(πx)) dt)dμ

= 1∫
θ(x, 1)dμ

∫
(

1∫
0

fn(πφt(x)) dt)dμ

= 1∫
θ(x, 1)dμ

∫
(

1∫
0

(fn ◦ π)(φt(x)) dt)dμ.
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Observe that fn ◦ π → χA, n → ∞. Since 
∫
fndν → 0, then 

∫
(
∫ 1
0 (fn ◦ π)(φt(x)) dt)dμ → 0 as n → ∞. So ∫

(
∫ 1
0 χA(φt(x)) dt)dμ → 0, which implies that μ(A) =

∫
χAdμ = 0, a contradiction. So the sufficient part 

holds. One can show the necessary part similarly. �
Theorem 3.6. Let φ, ψ : M×R → M be two continuous flows on a compact metric space and let μ ∈ Merg,φ

and ν ∈ Merg,ψ. If two probability flows (φ, μ) and (ψ, ν) are equivalent with reparameterization θ(x, t) for 
μ − a.a. x ∈ M while transferring φ to ψ, then

hμ(φ) = 0 ⇔ hν(ψ) = 0, and hμ(φ) = ∞ ⇔ hν(ψ) = ∞.

Proof. Let η > 0 and take ε > 0 such that

d(y1, y2) < ε ⇒ d(π−1y1, π
−1y2) < η, ∀y1, y2 ∈ M.

By Proposition 2.1 and Lemma 3.4 limt→+∞
θ(x,t)

t =
∫
θ(x, 1) dμ = a < ∞, μ − a.a. x ∈ M . Note that 

θ(x, t) ≥ 0, a ≥ 0. Define for big T

A(T ) = {x ∈ M | θ(x, t)
t

≤ a + 1, ∀t ≥ T}.

Then μ(A(T )) tends to 1 as T tends to ∞. For given 0 < δ << 1 we take T0 > 0 large such that 
μ(A(T0)) > 1 − δ and thus ν(π(A(T0))) > 0 by Corollary 3.5. Without loss generality (taking T0 large when 
necessary) we assume that ν(π(A(T0))) > 1 − δ. Denote β = supx∈A(T0) θ(x, 1). Then 0 < β < ∞.

Set N := R(δ, t, ε, ψ) for t ≥ T0 and take

D(y1, t, ε, ψ), D(y2, t, ε, ψ), · · · , D(yN , t, ε, ψ)

to cover a subset of M of ν measure large than 1 − δ. Then

ν((∪N
i=1D(yi, t, ε, ψ)) ∩ (πA(T0))) > 1 − 2δ.

Assertion.

ν(∪N
i=1D(yi, t, ε, ψ) ∩ πA(T0)) ≤

β∫
θ(x, 1)dμ

μ(∪N
i=1π

−1D(yi, t, ε, ψ)) ∩A(T0)).

Set P = ∪N
i=1D(yi, t, ε, ψ) ∩ πA(T0). Take a sequence of closed sets Ck and a sequence of open sets 

Uk such that Ck ⊂ P ⊂ Uk and μ(Uk \ Ck) < 1
k , and take a sequence of continuous functions fk such 

that fk(x) = 1 on Ck, and fk(x) = 0 on M \ Uk, and 0 ≤ fk ≤ 1. It is clear that limk→+∞ fk = χP , 
limk→+∞

∫
fkdν =

∫
χP dν, and limk→+∞

∫
Uk\P fkdν = 0. By using Lemma 3.4 it follows that

ν(P ) =
∫

χP dν

= lim
k→+∞

∫
P

fkdν + lim
k→+∞

∫
Uk\P

fkdν

= lim
k→+∞

∫
P

fkdν

= lim
k→+∞

1∫
θ(x, 1)dμ

∫
(
θ(x,1)∫

fk(ψt(πx)) dt)dμ

π−1P 0



R. Saghin et al. / J. Math. Anal. Appl. 527 (2023) 127445 11
= 1∫
θ(x, 1)dμ

∫
π−1P

lim
k→+∞

(
θ(x,1)∫
0

fk(ψt(πx)) dt)dμ

= 1∫
θ(x, 1)dμ

∫
π−1P

(
θ(x,1)∫
0

lim
k→+∞

fk(ψt(πx)) dt)dμ

≤
supx∈A0(T0) θ(x, 1)∫

θ(x, 1)dμ
μ(π−1P )

= β

θ(x, 1)μ(π−1P ).

This proves the Assertion.
Arranging order when necessary we may assume the existence of Ñ , Ñ ≤ N , such that the first Ñ

(t, ε, ψ)− balls

D(y1, t, ε, ψ), D(y2, t, ε, ψ), · · · , D(yÑ , t, ε, ψ)

are exactly the ones that intersect with π(A) with positive ν measure. By moving the centers slightly we 
may assume that all the centers y1, · · · , yÑ are in πA(T0), which makes sense for θ(π−1yi, t), i = 1, · · · , Ñ . 
Observe that

D(π−1yi,
t

a + 1 , η, φ) ∩A(T0) ⊃ π−1(D(yi, t, ε, ψ) ∩ πA(T0)), i = 1, 2, · · · , Ñ , ∀t ≥ T0.

We thus have by the Assertion that

μ(∪Ñ
i=1D(π−1yi,

t

a + 1 , η, φ) ∩A(T0))

≥μ(π−1 ∪Ñ
i=1 D(yi, t, ε, ψ) ∩ πA(T0))

≥β

a
ν(∪Ñ

i=1D(yi, t, ε, ψ) ∩ πA(T0))

>(1 − 2δ) =: δ′.

Thus we have

R(δ′, t

a + 1 , η, φ) ≤ Ñ ≤ N = R(δ, t, ε, ψ), ∀t ≥ T0.

By Definition 3.1 we have

hν(ψ) = lim
ε→0

lim
t→∞

1
t

logR(δ, t, ε, ψ)

≥ lim
η→0

lim
t→∞

1
t

logR(δ′, t

a + 1 , η, φ)

= 1
a + 1 lim

η→0
lim
t→∞

1
t

a+1
logR(δ′, t

a + 1 , η, φ)

= 1
a + 1hμ(φ).

This shows that hν(ψ) ≥ Chμ(φ), where C = 1
a+1 > 0. One can show similarly that hν(ψ) ≤ C ′hμ(φ) for 

some positive constant C ′. Therefore,
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hμ(φ) = 0 ⇔ hν(φ) = 0, hμ(φ) = ∞ ⇔ hν(φ) = ∞. �
Proof of Main Theorem. (1) → (2). Assume (1), that is by Definition 1.1 we assume that h(φ) > 0 and 
h(ψ) = 0. By Lemma 3.2(2), these deduce M+

erg,φ �= ∅ and M+
erg,ψ = ∅. By Theorem 3.6 and Proposition 2.3

π∗M+
erg,ψ ∩Merg,ψ = ∅. So the phenomenon of measure degeneracy happens.

(2) → (1). Since M+
erg,φ �= ∅ and M+

erg,ψ = ∅ by assumption, it holds by Lemma 3.2(2) that h(φ) > 0
and h(ψ) = 0. So the phenomenon of entropy degeneracy happens. �
Proof of Corollary of Main Theorem. Now by Main Theorem 1.3 h(φ) > 0 and h(ψ) = 0. To get the 
corollary let us suppose, on contradictory, that

lim
t→+∞

θ(x, t)
t

< ∞, μ− a.a.x ∈ M

for some μ ∈ M+
erg,φ. Define a ψ ergodic invariant measure ν by

∫
fdν = 1∫

θ(x, 1)dμ

∫
(
θ(x,1)∫
0

f(ψt(πx)) dt)dμ, ∀f ∈ C0(M,R).

Clearly (φ, μ) and (ψ, ν) are measure-theoretic equivalent. By Theorem 3.6 hν(ψ) > 0. And by Lemma 3.2(2), 
h(ψ) > 0, a contradiction. �
4. Probability systems in natural time-changed flows

Based on Theorem 1.3, we make an analysis in this section for probability systems in natural time-changed 
flows described as follows.

Let φ : M × R → M be a Cr flow induced by a Cr vector field X, r ≥ 1 and let M0 denote the set of 
singularities of X. Let θ(x, t), x ∈ M \M0, t ∈ R be a continuous function satisfying the following:

1) θ(x, 0) = 0 and θx = θ(x, .) : R → R is strictly increasing ∀x ∈ M \M0; and
2) θx(s + t) = θx(s) + θφs(x)(t), ∀s, t ∈ R, ∀x ∈ M \M0.
Define a flow ψ : M ×R → M ,

ψt(x) = φθ(x,t)(x), ∀x ∈ M \M0, t ∈ R,

ψt(x) = x, ∀x ∈ M0, ∀t ∈ R.

We call ψ to be a time-changed flow from φ by θ(x, t). (M, φ) and (M, ψ) are clearly equivalent, with 
transferring homeomorphism π := id : M → M . If further the function θ(x, t), x ∈ M \M0, t ∈ R is C1

differentiable in both variables, then we call ψ a natural time-changed flow from φ by θ(x, t). In this case 
there is a C1 vector field Y on M such that ψ is induced by Y .

Remark. If both φ and ψ are Cr and x is not a fixed point, then the Implicit Function Theorem immediately 
implies that θ(x, t) is Cr in both variables.

Proposition 4.1. For a natural time-changed flow from φ to ψ by θ(x, t) it holds

θ(x, t) =
t∫ ‖Y (ψsx)‖
‖X(ψsx)‖ ds, ∀t ∈ R, x ∈ M \M0.
0
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Proof. From

ψt(ψsx) = ψs+t(x) = φθ(x,s+t)(x) = φθ(φsx,t)(φθ(x,s)x),

we get

Y (ψsx) = dψt(ψsx)
dt

|t=0 =
dφθ(φsx,t)(φθ(x,s)x)

dθ(φsx, t)
|θ=0

dθ(φsx, t)
dt

|t=0 = X(φθ(x,s)x)θ̇(φsx, 0),

where θ̇(φsx, 0) = dθ(φsx,t)
dt |t=0, and x ∈ M \M0. Note θ(x, t) is increasing with t, θ̇(φsx, 0) ≥ 0. So

θ̇(φsx, 0) = |θ̇(φsx, 0)| = ‖Y (ψsx)‖
‖X(φθ(x,s)x)‖ = ‖Y (ψsx)‖

‖X(ψsx)‖ .

Observe that

θ̇(φsx, 0) = dθ(φsx, t)
dt

|t=0 = dθ(x, s + t)
d(s + t) |t=0 = dθ(x, s)

ds
,

and θ(x, 0) = 0, we have

θ(x, t) =
t∫

0

‖Y (ψsx)‖
‖X(ψsx)‖ ds, ∀t ∈ R, x ∈ M \M0. �

As showed in 1.3 and [6] it is singularity that causes measure degeneracy. And one singularity is enough 
to cause such degeneracy, see [1] [11] for discrete case. We show in the next theorem that the singularity 
that causes measure degeneracy is not hyperbolic.

Theorem 4.2. Let M be a compact manifold and let φ : M × R → M be a Cr flow induced by a Cr vector 
field X (r ≥ 1) with exact one singularity p. Let ψ be a natural time-changed flow from φ by θ(x, t) and 
denote Y the vector field of ψ. If the entropy degeneracy happens while changing ψ to φ, that is, h(φ) > 0
and h(ψ) = 0, then p is not hyperbolic.

Proof. p is the unique singularity for both φ and ψ. We denote f(x) = ‖Y (x)‖
‖X(x)‖ , x ∈ M \ {p}. Denote by 

λ1, · · · λn the eigenvalues of Dφ|p and by γ1, · · · , γn the eigenvalues of Dψ|p, where n = dimM . Since p is 
a hyperbolic singularity for both X and Y , non eigenvalue is zero. There exist a neighborhood N of p, four 
positive numbers a, b, c, d such that for x ∈ N it holds that

a
√

|λ1|2 + · · · |λn|2 ≤ ‖X(x)‖ ≤ b
√

|λ1|2 + · · · |λn|2

c
√

|γ1|2 + · · · |γn|2 ≤ ‖Y (x)‖ ≤ d
√

|γ1|2 + · · · |γn|2

Denote A = c
√

|γ1|2+···|γn|2
b
√

|λ1|2+···|λn|2
, B = d

√
|γ1|2+···|γn|2

a
√

|λ1|2+···|λn|2
. Then A ≤ f(x) ≤ B, x ∈ N . By Proposition 4.1

θ(x, t) =
t∫

0

‖Y (ψsx)‖
‖X(ψsx)‖ ds, ∀t ∈ R, x ∈ M \ {p}.

So At ≤ θ(x, t) ≤ Bt, x ∈ N, t ≥ 0. Observe there is no singularity in M \ N , Ct ≤ θ(x, t) ≤ Dt, x ∈
M \N, t ≥ 0. Set E = min{A, C} and F = max{B, D}, then
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Et ≤ θ(x, t) ≤ Ft, x ∈ M, t ≥ 0.

This implies by a standard argument that entropy degeneracy does not happen, a contradiction. So the 
singularity p is not hyperbolic. �
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